DE eng

Search in the Catalogues and Directories

Hits 1 – 1 of 1

1
The Complexity of Standing Postural Control in Older Adults: A Modified Detrended Fluctuation Analysis Based upon the Empirical Mode Decomposition Algorithm
Zhou, Junhong; Manor, Bradley David; Liu, Dongdong; Hu, Kun; Zhang, Jue; Fang, Jing. - : Public Library of Science, 2013
Abstract: Human aging into senescence diminishes the capacity of the postural control system to adapt to the stressors of everyday life. Diminished adaptive capacity may be reflected by a loss of the fractal-like, multiscale complexity within the dynamics of standing postural sway (i.e., center-of-pressure, COP). We therefore studied the relationship between COP complexity and adaptive capacity in 22 older and 22 younger healthy adults. COP magnitude dynamics were assessed from raw data during quiet standing with eyes open and closed, and complexity was quantified with a new technique termed empirical mode decomposition embedded detrended fluctuation analysis (EMD-DFA). Adaptive capacity of the postural control system was assessed with the sharpened Romberg test. As compared to traditional DFA, EMD-DFA more accurately identified trends in COP data with intrinsic scales and produced short and long-term scaling exponents (i.e., αShort, αLong) with greater reliability. The fractal-like properties of COP fluctuations were time-scale dependent and highly complex (i.e., αShort values were close to one) over relatively short time scales. As compared to younger adults, older adults demonstrated lower short-term COP complexity (i.e., greater αShort values) in both visual conditions (p>0.001). Closing the eyes decreased short-term COP complexity, yet this decrease was greater in older compared to younger adults (p<0.001). In older adults, those with higher short-term COP complexity exhibited better adaptive capacity as quantified by Romberg test performance (r2 = 0.38, p<0.001). These results indicate that an age-related loss of COP complexity of magnitude series may reflect a clinically important reduction in postural control system functionality as a new biomarker. ; Version of Record
Keyword: Aging; Algorithms; Anatomy and Physiology; Applied Mathematics; Biology; Biomechanics; Biophysics; Complex Systems; Mathematics; Medicine; Musculoskeletal System; Nonlinear Dynamics; Physics; Physiological Processes
URL: http://nrs.harvard.edu/urn-3:HUL.InstRepos:11179048
https://doi.org/10.1371/journal.pone.0062585
BASE
Hide details

Catalogues
0
0
0
0
0
0
0
Bibliographies
0
0
0
0
0
0
0
0
0
Linked Open Data catalogues
0
Online resources
0
0
0
0
Open access documents
1
0
0
0
0
© 2013 - 2024 Lin|gu|is|tik | Imprint | Privacy Policy | Datenschutzeinstellungen ändern