DE eng

Search in the Catalogues and Directories

Page: 1 2 3 4 5...58
Hits 1 – 20 of 1.159

1
Psychiatry on Twitter: Content Analysis of the Use of Psychiatric Terms in French
In: ISSN: 2561-326X ; JMIR Formative Research ; https://hal.archives-ouvertes.fr/hal-03614832 ; JMIR Formative Research, JMIR Publications 2022, 6 (2), pp.e18539. ⟨10.2196/18539⟩ ; https://formative.jmir.org/2022/2/e18539 (2022)
BASE
Show details
2
« “Twitta” “Intellectuelle” “Influenceuse” ? Être enseignante-chercheuse sur twitter »
In: ISSN: 1763-0061 ; EISSN: 1963-1812 ; Tracés : Revue de Sciences Humaines ; https://hal.archives-ouvertes.fr/hal-03592945 ; Tracés : Revue de Sciences Humaines, ENS Éditions, A paraître (2022)
BASE
Show details
3
Renouvellement paradigmatique dans l’analyse des discours numériques : le cas de la communication politique sur les RSN
In: ISSN: 2116-1747 ; Etudes de stylistique anglaise ; https://hal-amu.archives-ouvertes.fr/hal-03584927 ; Etudes de stylistique anglaise, Société de stylistique anglaise, Lyon, 2022, Renaissance(s)/Rebirth(s), ⟨10.4000/esa.4816⟩ ; https://journals.openedition.org/esa/4816 (2022)
BASE
Show details
4
Chapter 11. Consumer opinion about smoked bacon using Twitter and textual analysis: The challenge continues
In: Sensory Analysis for the Development of Meat Products ; https://hal-agrosup-dijon.archives-ouvertes.fr/hal-03575175 ; Sensory Analysis for the Development of Meat Products, Elsevier, pp.181-196, 2022, 9780128228326. ⟨10.1016/B978-0-12-822832-6.00013-8⟩ (2022)
BASE
Show details
5
#Bittersweet: Positive, negative, and mixed emotions in twitter posts ...
Langbehn, Andrew. - : Open Science Framework, 2022
BASE
Show details
6
A Multilingual Dataset of COVID-19 Vaccination Attitudes on Twitter ...
Ninghan; Xihui; Zhiqiang. - : Zenodo, 2022
BASE
Show details
7
A Multilingual Dataset of COVID-19 Vaccination Attitudes on Twitter ...
Ninghan; Xihui; Zhiqiang. - : Zenodo, 2022
BASE
Show details
8
Source Code for Youtube dataset processing ...
TURENNE, Nicolas. - : Zenodo, 2022
BASE
Show details
9
Source Code for Youtube dataset processing ...
TURENNE, Nicolas. - : Zenodo, 2022
BASE
Show details
10
MULDASA: Multifactor Lexical Sentiment Analysis of Social-Media Content in Nonstandard Arabic Social Media
In: Applied Sciences; Volume 12; Issue 8; Pages: 3806 (2022)
BASE
Show details
11
Extracting Disaster-Related Location Information through Social Media to Assist Remote Sensing for Disaster Analysis: The Case of the Flood Disaster in the Yangtze River Basin in China in 2020
In: Remote Sensing; Volume 14; Issue 5; Pages: 1199 (2022)
BASE
Show details
12
Analysis of the Full-Size Russian Corpus of Internet Drug Reviews with Complex NER Labeling Using Deep Learning Neural Networks and Language Models
In: Applied Sciences; Volume 12; Issue 1; Pages: 491 (2022)
BASE
Show details
13
Social Media and the Pandemic: Consumption Habits of the Spanish Population before and during the COVID-19 Lockdown
In: Sustainability; Volume 14; Issue 9; Pages: 5490 (2022)
BASE
Show details
14
Climate Change Sentiment Analysis Using Lexicon, Machine Learning and Hybrid Approaches
In: Sustainability; Volume 14; Issue 8; Pages: 4723 (2022)
BASE
Show details
15
Artificial Intelligent in Education
In: Sustainability; Volume 14; Issue 5; Pages: 2862 (2022)
BASE
Show details
16
eHealth Engagement on Facebook during COVID-19: Simplistic Computational Data Analysis
In: International Journal of Environmental Research and Public Health; Volume 19; Issue 8; Pages: 4615 (2022)
Abstract: Understanding social media networks and group interactions is crucial to the advancement of linguistic and cultural behavior. This includes how people accessed advice on health during COVID-19 lockdown. Some people turned to social media to access information on health when other routes were curtailed by isolation rules, particularly among older generations. Facebook public pages, groups and verified profiles using keywords “senior citizen health”, “older generations”, and “healthy living” were analyzed over a 12-month period to examine engagement with social media promoting good mental health. CrowdTangle was used to source status updates, photo and video sharing information in the English language, which resulted in an initial 116,321 posts and 6,462,065 interactions. Data analysis and visualization were used to explore large datasets, including natural language processing for “message” content discovery, word frequency and correlational analysis as well as co-word clustering. Preliminary results indicate strong links to healthy aging information shared on social media, which showed correlations to global daily confirmed cases and daily deaths. The results can identify public concerns early on and address mental health issues among senior citizens on Facebook.
Keyword: COVID-19; data analysis; mental health; natural language processing; netnography; social media; visualization
URL: https://doi.org/10.3390/ijerph19084615
BASE
Hide details
17
How Do Chinese People View Cyberbullying? A Text Analysis Based on Social Media
In: International Journal of Environmental Research and Public Health; Volume 19; Issue 3; Pages: 1822 (2022)
BASE
Show details
18
Knowledge Discovery from Large Amounts of Social Media Data
In: Applied Sciences; Volume 12; Issue 3; Pages: 1209 (2022)
BASE
Show details
19
Detecting Depression Signs on Social Media: A Systematic Literature Review
In: Healthcare; Volume 10; Issue 2; Pages: 291 (2022)
BASE
Show details
20
A Novel Method of Generating Geospatial Intelligence from Social Media Posts of Political Leaders
In: Information; Volume 13; Issue 3; Pages: 120 (2022)
BASE
Show details

Page: 1 2 3 4 5...58

Catalogues
56
70
1
0
9
0
7
Bibliographies
44
0
0
0
0
0
0
0
1
Linked Open Data catalogues
0
Online resources
0
0
0
0
Open access documents
1.016
6
0
0
0
© 2013 - 2024 Lin|gu|is|tik | Imprint | Privacy Policy | Datenschutzeinstellungen ändern